Researchers from The Forschungsverbund Berlin e.V. have found a way to use MRI to detect metastases in certain types of cancer in the brain at an early stage, using only minimal amounts of contrast agent.

The team uses a synthetic molecule that helps to detect the formation of new blood vessels, producing much more sophisticated imaging than is possible with conventional methods of diagnosis.

Some types of cancer – including breast cancer – may induce the formation of brain metastases. Increased development of new small blood vessels (capillaries) is an early sign of abnormal tissue changes. Conventional contrast agents used in magnetic resonance imaging (MRI) for examining the brain are not suitable for the direct and early detection of newly forming cells. “For this, we need a contrast agent that considerably increases the sensitivity of MRI by greatly improving the contrast structure, and that is only needed in tiny amounts,” explained FMP researcher Dr. Leif Schröder.

His group has been working for a long time to develop new contrast agents that detect artificially magnetized xenon in tissue and that cause signals even in small quantities. In his efforts to create a contrast agent especially suited for use in vascular cells of the so-called blood-brain barrier, the physicist was able to draw on preliminary work undertaken by his FMP colleague Dr. Margitta Dathe, who had developed a similar structure for drug transport to these cells in inner vascular walls of the brain. This peptide structure forms so-called micelles, aggregates of around 19 molecules that cluster spontaneously.

To utilize micelles for diagnostic purposes, Schröder and his team had them modified: “We inserted molecular cages – synthetic molecules shaped like a hollow soccer ball – that we can temporarily fill with xenon. We were therefore able to ‘switch on’ 19 xenon loads per micelle for the image contrast, enabling us to directly visualize this type of tumor-forming cells,” reported Leif Schröder.

Read more from FV-Berlin and find the study at Advanced Biosystems.

Featured image: Margitta Dathe, Leif Schröder, and co-workers demonstrate an MRI contrast agent that uses the available magnetization in a highly efficient way to enable selective cell labeling at minimally invasive concentrations. Image, Barth van Rossum, FMP