A new study suggests that migraines are related to brain abnormalities present at birth and others that develop over time. The research is published online in the journal Radiology.

Migraines are intense, throbbing headaches, sometimes accompanied by nausea, vomiting, and sensitivity to light. Some patients experience auras, a change in visual or sensory function that precedes or occurs during the migraine. More than 300 million people suffer from migraines worldwide, according to the World Health Organization.

Previous research on migraine patients has shown atrophy of cortical regions in the brain related to pain processing, possibly due to chronic stimulation of those areas. Cortical refers to the cortex, or outer layer of the brain.

Much of that research has relied on voxel-based morphometry, which provides estimates of the brain’s cortical volume. In the new study, Italian researchers used a different approach: a surface-based MRI method to measure cortical thickness.

Massimo Filippi, MD, director of the Neuroimaging Research Unit at the University Ospedale San Raffaele, and colleagues used magnetic resonance imaging (MRI) to acquire T2-weighted and 3-D T1-weighted brain images from 63 migraine patients and 18 healthy controls. Using special software and statistical analysis, they estimated cortical thickness and surface area and correlated it with the patients’ clinical and radiologic characteristics.

Compared to controls, migraine patients showed reduced cortical thickness and surface area in regions related to pain processing. There was only minimal anatomical overlap of cortical thickness and cortical surface area abnormalities, with cortical surface area abnormalities being more pronounced and distributed than cortical thickness abnormalities. The presence of aura and white matter hyperintensities areas of high intensity on MRI that appear to be more common in people with migraine was related to the regional distribution of cortical thickness and surface area abnormalities, but not to disease duration and attack frequency.